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SUMMARY. Tang, Gnecco, and Geller (1989, Biometrika 76, 577-583) proposed an approximate likelihood 
ratio (ALR) test of the null hypothesis that a normal mean vector equals a null vector against the alternative 
that all of its components are nonnegative with at least one strictly positive. This test is useful for comparing 
a treatment group with a control group on multiple endpoints, and the data from the two groups are assumed 
to follow multivariate normal distributions with different mean vectors and a common covariance matrix 
(the homoscedastic case). Tang et al. derived the test statistic and its null distribution assuming a known 
covariance matrix. In practice, when the covariance matrix is estimated, the critical constants tabulated 
by Tang et al. result in a highly liberal test. To deal with this problem, we derive an accurate small- 
sample approximation to the null distribution of the ALR test statistic by using the moment matching 
method. The proposed approximation is then extended to the heteroscedastic case. The accuracy of both 
the approximations is verified by simulations. A real data example is given to illustrate the use of the 
approximations. 

KEY WORDS: Chi-bar squared distribution; Heteroscedastic; Homoscedastic; Hotelling's T2 distribution; 
Multiple endpoints; Multivariate normal distribution. 

1. Introduction 

Many clinical trials are conducted to compare a treatment 
group with a control group on several endpoints. Often, the 
treatment is expected to have a positive effect on all end- 
points. Inappropriateness of Hotelling's T2 test for this prob- 
lem has been noted by several authors (cf., Meier, 1975). As 
an alternative to Hotelling's T2 test, O'Brien (1984) proposed 
his ordinary least squares (OLS) and generalized least squares 
(GLS) tests, which possess high power against the restricted 
alternative that the treatment has the same positive stan- 
dardized effect on all endpoints. In the one-sample problem, 
for the more general alternative that the mean vector lies 
in the positive orthant, the exact likelihood ratio (LR) tests 
were derived by Kud6 (1963) assuming a known covariance 
matrix and by Perlman (1969) assuming an unknown covari- 
ance matrix. However, these test statistics are complicated, 
and their null distributions are difficult to obtain. For the 
Perlman test statistic, the null distribution is not free of the 

unknown covariance matrix. To obviate some of these difficul- 
ties, Tang, Gnecco, and Geller (1989) proposed an approxi- 
mate likelihood ratio (ALR) test for the one-sample problem 
assuming a known covariance matrix. It provides an easy- 
to-use approximation to Kud6's test. When extended to the 
two-sample problem, it has better power properties compared 
with O'Brien's (1984) OLS and GLS tests for most alterna- 
tives in the positive orthant. This article focuses on the ALR 
test. 

In practical applications, the population covariance matrix 
is always unknown and the sample covariance matrix must 
be used to estimate it. This results in a highly liberal ALR 
test if one uses the null distribution derived by Tang et al., 
which assumes a known covariance matrix (see Reitmeir and 
Wassmer, 1996; Sankoh et al., 1999). The liberalism decreases 
as the degrees of freedom (d.f.) available to estimate the co- 
variance matrix increases. For example, for six endpoints, the 
estimated type I error rate for a nominal 0.05-level test is 
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0.3550 for 10 d.f., 0.1066 for 30 d.f., 0.0830 for 50 d.f., and 
0.0611 for 100 d.f. We derive an accurate approximation to 
the small-sample distribution of the ALR test that eliminates 
this liberalism. 

The outline of the article is as follows. In Section 2, we 
set the notation and review the ALR test for the two-sample 
problem in the known common covariance matrix (homosce- 
dastic) case. In Section 3, we propose the approximation to 
its small-sample null distribution in the unknown covariance 
matrix case. In Section 4, we extend the approximation to 
the unequal unknown covariance matrices (heteroscedastic) 
case. In Section 5, we present the results of simulations that 
demonstrate the accuracy of the proposed approximations. 
An example is given in Section 6. Finally, a discussion about 
some anomalies of the LR tests (including the ALR test) is 
given in Section 7. 

2. Notation, Problem Formulation, and the ALR Test 

Suppose that there are two independent treatment groups 
with ni and n2 subjects, on each of whom m > 2 endpoints 
are measured. Treatment 1 is the test treatment and treat- 
ment 2 is the control. Let Xijk denote the measurement on the 
kth endpoint for the jth subject in the ith treatment group. 
For treatment group i, assume that xij = (xi1, Xij2, ..., 

Xijm) j = 1,2, ... , ni, are independent and identically dis- 
tributed (i.i.d.) random vectors from an m-variate normal dis- 
tribution with mean vector pi = (bil, Ai2,.- *- i-tim) and co- 
variance matrix Ei (i = 1, 2). In the present and the next sec- 
tion, we assume the homoscedastic case, i.e., El = E2 = E 

(say). In this section, we assume that E is known. 
Let 6 = u1 - P2 = (61, 62, ... m)' denote the vector of 

mean differences. We are interested in testing the null hypoth- 
esis of no difference against the one-sided alternative: 

Ho: 6 = O vs. H1: 6 E 0+, (2.1) 

where 0 is the null vector and 0+ = {16 l k > 0 for k = 

1,2, .... , m, 6 :$ 0} is the positive orthant. 
Let -i = (xi.1, -i2, ... ., x.m)' denote the vector of sample 

means of the ni subjects from the ith group (i = 1, 2). The 
first step in the ALR test is to compute the transformation 

U = 12 A(1. - X2.), (2.2) 

where A is any positive definite matrix such that 

A'A = E 1 and A2A' = I. (2.3) 

Then u N(6, I), where 6 = {n1n2/(n1 + n2)}112A3 and 
the hypotheses (2.1) become Ho: 6 = 0 vs. H1: 6 E A(c+), 
where A(c+) = [{nln2/(n1 + n2)}112A6 i 6 E 0+] is a 
polyhedral cone. The matrix A used in the transformation is 
not unique. Tang et al. (1989) gave a method for choosing 
A such that the center direction of A(0+) coincides with 
the center direction of 0+, which is the equicoordinate ray 
(A, A ... ., A)' for A > 0. 

The cone alternative A(0+) is approximated by 0+. Then 
the ALR test statistic equals 

m 

g(u) = Z{max(uk, O)}2. (2.4) 
k=l 

The null distribution of g(u) is the x2 distribution (see Rob- 
ertson, Wright, and Dykstra, 1988) with symmetric binomial 
probability weights 

Pr{g(u) > c} = E ()k 2m Pr (Xk > c)v (2.5) 

k=O 

where Xo = . 

3. Small-Sample Null Distribution of the ALR Test 
Statistic in the Homoscedastic Case 

In this section, we assume that E, is unknown. Let E denote 
the pooled covariance matrix with v = ni + n2 - 2 d.f. It is 
known that E is positive definite with probability one (Eaton 
and Perlman, 1973). Analogous to the definition of u, we first 
make the transformation 

v = 1 2 B(X-1. - X2 ), (3.1) 
ni + n2 

where v = (vi, V2.... , vm)' and B is a positive definite matrix 
such that 

B'B = t-1 and B:B' = I. (3.2) 

Analogous to (2.4), the ALR test statistic is given by 
m 

g(v) = E {max(vk, O)}2. (3.3) 
k=1 

The choice of B is not unique and, depending on the choice, 
the null distribution of v may or may not depend on S. In par- 
ticular, it is straightforward to show that, if B is the unique 
lower triangular matrix obtained using the Cholesky decom- 
position, the null distribution of v does not depend on S. 
Also, it is easy to see that this distribution is symmetric about 
the origin, and as v -4 oo, it approaches the joint distribu- 
tion of u, the components of which are i.i.d. N(O, 1) random 
variables (RVs). 

The null distribution of g(v) is quite intractable. Therefore, 
we derive an approximation to it. For finite v, by analogy to 
the x2 distribution (2.5), we propose approximating 

Pr{g(v) > c} 
m 

lz:~ E 2-m) mPr{ 

vk 

1 Fk,V-M+l > c} I 

k=O 

(3.4) 

where Fo,,-m+l = 0. Thus, we approximate the distribution 
of g(v) by a mixture of the distributions of 

(vkm 1 Fk,vm+l k k=O,,11...,ml 

with symmetric binomial probability weights. We will call this 
approximation the F approximation because it uses a mixture 
of scaled F RVs. This approximation is exact for all v when 
m = 1 and for v = oo when m> 1. 

We now show that the first moments of g(v) and the F 
approximation match. To compute E{g(v)}, we use the fact 
that 

m 

E Vk = v'v 
T ( iT+ ) Fm,v-m+l, (3.5) 

k=lV 
v 
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where T2 , is Hotelling's T2 random variable (Anderson, 
1984). Because each vk is symmetrically distributed around 
zero, we have (assuming that v > m + 1) 

m m 
E{g(v)} = E{max(vk,)}2 = E (vk) 

k=1 k=1 

= (v'v) 2E (Tm)= 2(v-m-1) 

Next, to compute the expected value of the F approximation, 
define a RV x = {vy/(v - m + 1)}Fy,,m+l, where y is a 
binomial RV with sample size m and success probability 1/2. 
Then E(x) = E{E(x I y)} equals 

E { Y + 1 E(Fy,w-m+l)} 

=E ( vy v-x 
m + 

v -m+1 v -m-1 
vE(y) - vm 

v-m-1 2(v-m-1) 

Therefore, the approximation matches with the exact distri- 
bution on the first moment. 

We also compared the second moments of g(v) and the F 
approximation. It can be shown that the exact variance of the 
F distribution is given by 

m - m _ { 4 + 2( - m-3) } 
and an approximation to the variance of g(v) is given by 

( 

2 

v - v2 )14 2(v -4) J 2(v- m -3) . 

The details of the derivations of these expressions are given 
in Logan (2001). For m = 1, the two expressions are equal to 

v 02 t1 v- 

(v-2) 4 v-4 

which is the variance of {max(vl, 0)}2 since vi - t, for m = 1. 

(Note that the vk are not marginally t-distributed for m > 1.) 
Also, as v -4 o0, both expressions approach 5m/4, which is 
the variance of the x2 distribution. For other cases, the vari- 
ance of the F distribution is found to be higher, suggest- 
ing that the F approximation will be conservative. Critical 
constants for the F approximation are given in Table 1 for 
a = 0.01, 0.05, and 0.10. 

4. Small-Sample Null Distribution of the ALR Test 
Statistic in the Heteroscedastic Case 

In what follows, it will be convenient to define li = (1/ni)Ei 
(i = 1, 2), Q = fl + Q2, and E = {n1n2/(n1 + n2)}Q. The 
sample estimates of these matrices are denoted by putting 
carets over them; thus, ti denotes the sample covariance ma- 
trix from group i with ni - 1 d.f. 

Analogous to (2.2) and (3.1), we now have the transforma- 
tion 

W = / C(1i. - X2.), (4.1) 
v'il + n2 

where w = (Wi, W2,... , wm)' and C is a positive definite 
matrix such that C'C = t-1 and CCtC' I. Analogous to 
(3.3), the ALR test statistic is given by 

m 

g(w) = E {max(wk, 0)}2. (4.2) 
k=1 

We propose the same F distribution (3.4) as an approxi- 
mation to the null distribution of g(w) but with the following 
Welch-Satterthwaite estimate of the degrees of freedom, v, 
derived by Yao (1965) for the multivariate Behrens-Fisher 
problem: 

1 1 F (d'Q1lQ1Qld)2 (d'Q1 1 

V (d'Q-1d)2 ni - 1 n2-1d] 

(4.3) 
where d = (i1. - 2). Note that Yao derived this formula 
(also using the moment matching method) to approximate the 
distribution of w'w = {nin2/(ni +n2)}(M1-.-X2.)t E 1- 

x2.) by Hotelling's Tm = {vm/(v-m+1)}Fm,,_m+j distri- 
bution with an estimated v, in analogy with the corresponding 
exact distribution result for v'v with v i nj + n2 -2 given in 

Table 1 
Critical constants for ALR test based on the F approximation 

m 

a v 2 3 4 5 6 7 8 

0.10 10 4.00 6.49 9.80 14.63 22.47 37.14 72.05 
30 3.24 4.61 5.97 7.37 8.85 10.42 12.13 
50 3.12 4.35 5.52 6.67 7.83 9.01 10.23 

oox2) 2.95 4.01 4.96 5.84 6.67 7.48 8.26 
0.05 10 6.18 9.65 14.40 21.61 33.87 58.48 123.6 

30 4.75 6.41 8.05 9.74 11.52 13.43 15.50 
50 4.53 5.99 7.36 8.70 10.05 11.43 12.84 

oC(-2) 4.23 5.44 6.50 7.48 8.41 9.29 10.16 
0.01 10 12.85 19.50 29.30 45.46 76.18 148.17 391.4 

30 8.64 10.95 13.24 15.62 18.15 20.87 23.85 
50 8.05 9.97 11.76 13.53 15.30 17.10 18.95 

oox2) 7.29 8.75 10.02 11.20 12.26 13.30 14.30 
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(3.5). We have simply extended Yao's approximation to the 
F distribution. 

5. Simulations 

5.1 Homoscedastic Case 

Simulations were designed to assess the actual type I error 
probabilities of the F approximation to the ALR test statistic 
distribution and compare it with the x2 approximation. Error 
probabilities were estimated for values of m = 2(2)8, v =10, 
30, and 50, and E = I. Additional simulations were done to 
study the dependence of g(v) on E for two choices of E for 
m = 4 and m = 8. The first choice was an equicorrelated 
matrix with common correlation p = 0.0,0.3,0.5,0.7, and 
0.9. The second choice was a block correlated matrix with 
two blocks of size m/2; the within-block and between-block 
correlations (P1 and P2, respectively) were chosen to be 
(Pl,P2) = (0.5,0.0),(0.9,0.0), and (0.9,0.5). In both cases, 
two combinations of variances were examined: all oi2 = 1, and 
half the oi2 = 1 and the other half equal four. 

In each of the 10,000 simulation runs, vE was sampled from 
a Wm(v, E) random matrix, u was independently sampled 
with i.i.d. N(0, 1) components, v was calculated using the 
relation v = BA-1u, and the ALR test statistic was 
computed using equation (3.3). The Tang et al. (1989) method 
was used to choose A and B. The P-value was computed 
using the -2 and F approximations. The proportion of runs 
in which this P-value is < al gives an estimate of the type I 
error probability. The results for the E = I case are given 
in Table 2. The results for the E :$ I case were similar 
and hence are not reported to save space. In particular, the 
type I error probability of g(v) is always well controlled at or 
slightly below Ol = 0.05. In no case did it exceed the upper 
95% rejection limit of 0.05 + 1.96{(0.05)(0.95)/10, 000}1/2 = 
0.0543. From these simulation results, it appears that the null 
distribution of g(v) does not depend in a significant way on 
E. This observation is bolstered by the fact that the first 
two moments of g(v) (the second moment expression being 
approximate) given in Section 3 also do not depend on E. 
Finally, the results show that the x2 approximation is liberal 
in all cases. For fixed v, its liberalism increases as m increases. 

5.2 Heteroscedastic Case 

The type I error probability of the ALR test was simulated 
for nominal Ol = .05, m = 4 and 8, and ni = n2 = 20,30, 
and 50. For each choice of m and ni = n2, a total of eight 
combinations of (El, E2) matrices were examined. These 
were parameterized as follows: treatment group, (El)ii =1 

(1 < i < m/2), (El)ii = uj2 (m/2 < i < m) and 

(El)ij = Pi(El)l/i2(El)jl/2 (1 < i =A j < m); control group, 

(E2)ii 2= = < i < m), (E2)ij = P2 (1 < i j< m). 
All simulations were based on 10,000 runs. In each run, the 

P-value of the simulated g(w) statistic was computed using 
the F approximation. The proportion of runs for which the 
P-value < al gives an estimate of the type I error probability. 
The results are summarized in Table 3. 

From these results, we see that the type I error probability 
is well controlled for ni = n2 = 30 and 50, but for nl = n2 = 

20, there are several cases (especially for m = 8) where 
the estimated type I error probability exceeds the 0.05-level 
significantly; these cases are marked with a superscript a. 

Table 2 
Simulation estimates of the type I error 

probability in the homoscedastic case 

m 

Ol V Approx. 2 4 6 8 

0.10 10 x2 0.1478 0.2557 0.4307 0.6987 
F 0.0983 0.1018 0.0970 0.1041 

30 x2 0.1188 0.1380 0.1761 0.2252 
F 0.1029 0.0995 0.0967 0.0961 

50 x2 0.1027 0.1245 0.1452 0.1620 
F 0.0948 0.0975 0.1004 0.0961 

0.05 10 x2 0.0940 0.1835 0.3550 0.6285 
F 0.0497 0.0449 0.0464 0.0505 

30 x2 0.0646 0.0832 0.1066 0.1507 
F 0.0513 0.0482 0.0476 0.0447 

50 x2 0.0588 0.0660 0.0830 0.0997 
F 0.0507 0.0479 0.0510 0.0464 

0.01 10 x2 0.0348 0.0946 0.2332 0.5149 
F 0.0106 0.0110 0.0088 0.0091 

30 x2 0.0183 0.0258 0.0392 0.0610 
F 0.0109 0.0095 0.0098 0.0081 

50 x2 0.0150 0.0182 0.0228 0.0318 
F 0.0101 0.0090 0.0096 0.0074 

However, in no case does the estimated type I error probability 
exceed substantially, say, 0.06. Thus, we conclude that the 
approximation is quite accurate for ni = n2 > 30 and is 
acceptably accurate for ni = n2 = 20 if m < 8. For larger 
values of m, these sample sizes may not be adequately large. 

6. Example 
Lauter, Kropf, and Glimm (1998) used data from a trial 
conducted by Dr Michael Synowitz at the Clinic for Heart 
Surgery of the Berlin Medical Faculty (CHARITE) in 1995. 
In this trial, it was of interest to determine if autotransfusion 
(donation of the patient's own blood) makes surgical patients 
more sensitive to postoperative risk of infection (pneumonia, 
wound infection, etc.). This conjecture was supported by the 
fact that erythrocytes could be activated in the extracorporal 
circuit. Thirty patients about to undergo bypass surgery 
were randomized into two groups of 15 patients each. The 
treatment group received autotransfusion by means of a 
Pfizer-Shirley system, while the control group did not receive 
autotransfusion. As a measure of the risk, interleukin-6 (which 
is a proinflammation interleukin) plasma concentration (in 
picogram/ml) levels were measured for each patient at the 
time of surgical cut (to) and on six successive occasions (to + 1, 
to + 3, to + 6, to + 12, to + 24, and to + 48 hours). Note that 
here we have repeated measures data on the same endpoint. 
This makes the assumption of one-sided effect more plausible 
than if we had different endpoints. 

The first two measurements were dropped because of 
some missing and some inconsistent data, and the natural 
logarithmic transformation was applied to the remaining five 
measurements. The resulting data are shown in Table 4. The 
mean vectors and the sample covariance matrices for the two 
groups are as follows: 
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Table 3 
Simulation estimates of the type I error probability in the heteroscedastic 

case using the F approximation with estimated degrees of freedom (a = .05) 

n1 = n2 = 20 n1 = n2 = 30 n1 = n2 = 50 

a12 a12 a22 P1 P2 m=4 m=8 m=4 m=8 m=4 m=8 

4 4 1 0 0 .0535 .0562a .0536 .0486 .0506 .0487 
2 1 0 0 .0463 .0509 .0530 .0468 .0501 .0500 
4 1 0.5 0 .0478 .0512 .0481 .0453 .0486 .0500 
2 1 0.5 0 .0493 .0444 .0466 .0460 .0512 .0460 
4 1 0 0.5 .0500 .0575a .0500 .0501 .0458 .0477 
2 1 0 0.5 .0479 .0546a .0479 .0474 .0449 .0476 
4 1 0.5 0.5 .0572a .0538 .0469 .0525 .0479 .0482 
2 1 0.5 0.5 .0509 .0463 .0499 .0450 .0473 .0490 

a These type I error probability estimates exceed the nominal a = .05 at the 5% signifi- 
cance level. 

x1. = (3.50,4.11,3.77,3.41,3.15), 

X2. = (3.33,3.55,3.46,2.85,2.68), 

[0.58 0.32 0.38 0.26 0.171 
= 0.49 0.44 0.33 0.21 

S0= 0.53 0.41 0.21 
0.45 0.34 

0.58 

and 

-0.38 0.08 0.08 0.05 -0.12- 
0.21 0.00 -0.08 -0.09 

2= 0.22 0.13 0.02 
0.25 0.10 

0.28 

Box's (1949) test for homogeneity of covariance matrices 
yielded a nonsignificant result (X2 = 16.958 with a P-value 
= 0.321). Therefore, tj and t2 were pooled with total d.f. 
= 28 and the ALR test for the homoscedastic case was ap- 

plied. The transformation matrix using the Tang et al. (1989) 
method is 

- 1.57 -0.77 -0.53 0.16 0.74- 
0.07 2.11 -1.44 0.77 -0.11 
0.03 -0.27 2.72 -2.25 0.55 

B = -0.13 -0.21 0.10 2.05 -1.42 
-0.85 0.02 0.37 0.50 1.00 

The ALR test statistic equals g(v) = 14.60. Using the x2 
approximation, the P-value is 0.0022, whereas using the F 
approximation, the P-value is 0.0145. Note the liberalism of 
the x2 approximation. The F-approximated P-value is in line 
with the P-value of 0.0199 obtained using the standardized 
sum statistic of Liiuter (1996) and 0.0104 obtained using the 
OLS statistic of O'Brien (1984). 

For comparison purposes, the heteroscedastic ALR test was 
also performed. Because ni = n2, E is the same in the het- 
eroscedastic case as in the homoscedastic case. Therefore, 

Table 4 
Log-transformed interleukin-6 plasma concentration measurements at five 

successive occasions on bypass surgery patients with and without autotransfusion 

With autotransfusion Without autotransfusion 

j X1j1 X1j2 X1j3 Xlj4 Xlj5 X2j1 X2j2 X2j3 X2j4 X2j5 

1 2.84 4.00 3.45 2.55 2.46 2.60 3.76 2.86 2.41 2.71 
2 2.51 3.26 3.10 2.82 2.48 2.82 3.66 3.20 2.49 2.49 
3 2.41 4.14 3.37 2.99 3.04 2.18 3.65 3.87 3.00 2.65 
4 2.95 3.42 2.82 3.37 3.35 3.46 3.60 2.97 1.80 1.74 
5 3.14 3.25 3.31 2.87 3.41 4.01 3.48 4.42 3.06 2.76 
6 3.79 4.34 3.88 3.40 3.16 3.04 2.87 2.87 2.71 2.87 
7 4.14 4.97 4.25 3.43 3.06 3.47 3.24 3.47 3.26 3.14 
8 3.85 4.31 3.92 3.58 3.91 4.06 3.92 3.18 3.06 1.74 
9 3.02 3.11 2.20 2.24 2.28 2.91 3.99 3.06 2.02 3.18 

10 3.45 3.41 3.80 3.86 3.91 3.59 4.21 4.02 3.26 2.85 
11 5.37 5.02 4.59 3.99 4.27 4.51 4.21 3.78 2.63 1.92 
12 3.81 4.21 4.08 3.18 1.86 3.16 3.31 3.28 3.25 3.52 
13 4.19 4.59 4.79 4.17 2.60 3.86 3.61 3.28 3.19 3.09 
14 3.16 5.30 4.69 4.83 4.51 3.31 2.97 3.76 3.18 2.60 
15 3.84 4.32 4.25 3.87 2.93 3.02 2.73 3.87 3.50 2.93 
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C = B and g(w) = g(v) = 14.60. The degrees of freedom 
using the formula (4.3) are v = 25 and the P-value = 0.0172. 
Thus, the result is similar to that in the homoscedastic case. 

7. Discussion 

Silvapulle (1997) has given an example in the bivariate case 
where the LR test rejects Ho even if both the mean differences 
are negative. This anomaly hinges on a large positive correla- 
tion between the endpoints. Many authors have noted other 
anomalies of the LR tests such as the lack of unbiasedness and 
monotonicity and existence of uniformly more powerful tests. 
On the other hand, Perlman and Wu (1999) have defended LR 
tests (see, however, Perlman and Wu, 2000), noting that the 
alternative tests (e.g., those proposed by Berger, 1989; Tang, 
1994; and Wang and McDermott, 1998) that are less biased 
and more powerful also suffer from lack of monotonicity and 
nonintuitive rejection regions. They argued that the anoma- 
lies of LR tests are the result of an incorrectly specified null 
hypothesis. The anomalies disappear when the null hypothe- 
sis is specified as the complement of the one-sided alternative 
hypothesis. 

Cohen and Sackrowitz (1998) have suggested cone ordered 
monotone tests to ameliorate these difficulties. However, their 
rejection regions are not entirely satisfactory either because, 
e.g., in the bivariate case, their test can reject Ho if a large 
negative difference on one endpoint is overcome by a larger 
positive difference on the other endpoint (see Perlman and 
Wu, 2001). 

The above-mentioned anomalies translate to the ALR test 
as well. Generally, they tend to occur when the endpoints 
are highly positively correlated. In this case, the endpoints 
with very dissimilar negative mean differences, when pro- 
jected onto the positive orthant, can generate a large value 
of the LR statistic that warrants rejection. 

It is not our intention to get into the pros and cons of tests 
for multiparameter hypothesis testing problems that seem to 
afflict LR as well as other tests. Suffice it to say that the 
above anomalies should not present a serious problem in most 
practical situations. When the correlation is high, it is un- 
usual for the mean differences to be very dissimilar and the 
LR statistic to be large as a result. If a negative effect on 
some endpoint(s) cannot be ruled out a priori, then a one- 
sided test should not be used. When a one-sided test is ap- 
plicable, the ALR test is a good choice that performs better 
than the more popular OLS test. We have offered an accu- 
rate method for applying the ALR test in small samples. The 
proposed approximations are very simple to implement by us- 
ing a C program available for download at http: //users. 
iems . northwestern. edu/-aj it. 
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RESUME 

Tang, Gnecco et Geller (1989) ont propose un test approche 
de rapport de vraisemblance (ALR) pour l'hypothese nulle 

qu'un vecteur moyenne Normal est egal au vecteur nul contre 
l'alternative que toutes ses composantes sont non negatives 
avec au moins l'une d'elle strictement positive. Ce test est 
utile pour comparer un groupe traite a un groupe temoin, 
quand les donnees de chaque groupe ont une distribution 
multi-Normale avec des moyennes differentes et une matrice 
de covariance commune (cas homoscedastique). Tang et al. 
ont bati ce test et sa distribution nulle en supposant que 
la matrice de covariance etait connue. En pratique, quand 
elle est estimee les valeurs des tables de Tang et al. aboutis- 
sent a un test tres "liberal". Pour resoudre ce probleme, nous 
determinons une approximation precise pour de petites echan- 
tillons de la distribution nulle de la statistique du test ARL en 
utilisant la methode des moments. L'approximation que nous 
proposons s'etend au cas heteroscedastique. La precision des 
deux approximations est verifiee par simulation. Un exemple 
sur des donnees reelles illustre l'usage des approximations. 
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